QUALIFICATION ROUND

Dear students,

Congratulations for participating in the Chemistry Olympiad! We wish you every success in this event as well as in your studies and in all your future endeavours.

Before beginning this test, read the following carefully.

IMPORTANT NOTES

- You must answer 17 questions for a total of 100 points.
- Follow the instructions carefully.
- You have, at the beginning of the questionnaire, a page with a table of the relative atomic masses of the elements, the value of some constants as well as the electronegativities of the elements of the first three periods.
- At the end of the questionnaire, you will have a draft sheet of paper to make notes and calculations and to prepare your answers.
- The duration of the test is 2 hours.
- The use of a non-programmable calculator is allowed.
- To facilitate student work, the indication of aggregation states is not required.

In several questions, you will have to make a choice between two or more answers. In this case, simply mark the number(s), the letter(s) or check the box(es) corresponding to the correct answer(s) in a very visible manner.

The candidates selected at the end of this first round will be summoned to the second event of the National Olympiad which will take place on Thursday, March 12, 2020 at 14:30 at the RobertSchuman High School in Luxembourg.

At the end of this second event, a dozen national winners will be chosen to participate in the final, which will take place on Saturday, April 25th.

This last event will select, among them, the four students who will participate in the 52 nd IChO in Istanbul, from July 6 to 15, 2020. More information can be found on http://icho.olympiades.lu/.

Wishing you good luck.
The organizers of the Chemistry Olympiad

Detach this sheet and keep it for your information.
de l'Enfance et de la Jeunesse LUXEMBOURG

Natural constants

(You may detach this sheet if necessary)

1) Lanthanides	138,92 $\mathbf{L a}$ 57	140,12 Ce 58	$\begin{array}{\|c\|} \hline 140,91 \\ \mathbf{P r} \\ 59 \\ \hline \end{array}$	$\begin{array}{\|l} 144,24 \\ \mathbf{N d} \\ 60 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \mathbf{P m}^{*} \\ \hline 61 \\ \hline \end{array}$	150,36 $\mathbf{S m}$ 62	151,97 $\mathbf{E u}$ 63	157,25 $\mathbf{G d}$ 64	158,93 $\mathbf{T b}$ 65	$\begin{aligned} & 162,50 \\ & \mathbf{D y} \\ & 66 \end{aligned}$	$\begin{aligned} & 164,93 \\ & \mathbf{H o} \\ & 67 \end{aligned}$	167,26 $\mathbf{E r}$ 68	$\begin{array}{\|l\|} \hline 168,93 \\ \mathbf{T m} \\ \hline 69 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 173,04 \\ \mathbf{Y b} \\ 70 \\ \hline \end{array}$
2) Actinides	$\left.\begin{aligned} & \mathbf{A c}^{*} \\ & 89 \end{aligned} \right\rvert\,$	$\begin{gathered} 232,04 \\ \mathbf{T h} \\ 90 \end{gathered}$	$\begin{gathered} 231,04 \\ \mathbf{P a} \\ 91 \end{gathered}$	$\begin{gathered} 238,03 \\ \mathbf{U} \\ 92 \end{gathered}$	$\mathrm{Na}^{\mathbf{N}}{ }^{\text {a }}$	$\begin{array}{\|l\|} \mathbf{P u}^{*} \\ 94 \end{array}$	$\begin{array}{\|l\|} \hline \text { Am } \\ 95 \end{array}$	$\begin{gathered} \mathbf{C m}^{*} \\ 96 \end{gathered}$	$\mathbf{B k}^{*}$	$\begin{gathered} \mathbf{C f}^{*} \\ 98 \end{gathered}$	$\begin{aligned} & \mathbf{E s}^{*} \\ & 99 \end{aligned}$	$\begin{aligned} & \mathbf{F m}^{*} \\ & 100 \end{aligned}$	$\begin{array}{\|l} \mathbf{M d}^{*} \\ 101 \end{array}$	$\begin{aligned} & \mathbf{N o}^{*} \\ & 102 \end{aligned}$

* Elements which don't have any isotopes with a sufficiently long half-life and thus don't have a characteristic terrestrial composition.

Constants

$R=8,31 \mathrm{~J} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~K}^{-1}$
$R=8,21 \cdot 10^{-2} \mathrm{~L} \cdot \mathrm{~atm} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~K}^{-1}$
Volume of one mole of an ideal gas at 273 K and $101325 \mathrm{~Pa}: 22,4 \mathrm{dm}^{3} \mathrm{~mol}^{-1}\left(\mathrm{~L} \cdot \mathrm{~mol}^{-1}\right)$
$1 F=9,65 \cdot 10^{4} \mathrm{C} \cdot \mathrm{mol}^{-1}$
$N_{A}=6,02 \cdot 10^{23} \mathrm{~mol}^{-1}$
$1 \mathrm{~atm}=760 \mathrm{mmHg}=101325 \mathrm{~Pa}$

Electronegativities of the elements found in the first 3 periods

$\mathrm{H}:$	2,1	$\mathrm{~N}:$	3,0	$\mathrm{Al}:$	1,5
$\mathrm{Li}:$	1,0	$\mathrm{O}:$	3,5	$\mathrm{Si}:$	1,8
$\mathrm{Be}:$	1,5	$\mathrm{~F}:$	4,0	$\mathrm{P}:$	2,1
$\mathrm{~B}:$	1,9	$\mathrm{Na}:$	0,9	$\mathrm{~S}:$	2,5
$\mathrm{C}:$	2,5	$\mathrm{Mg}:$	1,2	$\mathrm{Cl}:$	3,0

Chemistry OLYMPIAD 2020

QUALIFICATION ROUND

Name :

\qquad

First name :

\qquad
School : \qquad

4 pts	QUESTION I - Air						
4 pts	Complete the table by indicating the 4 main constituents of "natural and dry" air, giving their name and formula. Then indicate by a cross in the appropriate column(s), which constituent: - is responsible for the slightly acidic nature of water, even distilled, in contact with air; - is essential for the breathing of all living beings; - is essential for photosynthesis in green plants; - is used in the manufacture of nitrogen fertilizers; - is chemically inert at room temperature.						
	Name of the constituent	Formula	Causes acidification of water	Respiration	Photosynthesis	Fertilizer	chemically inert
	Helium	He					x
	Complete the above table based on the example in the first row.						

5 pts	QUESTION IV - Coca Cola and Phosphoric Acid
5 pts	Phosphoric acid is produced industrially by the action of concentrated sulfuric acid (93\%) on fluoroapatite $\mathrm{Ca}_{5}\left(\mathrm{PO}_{4}\right)_{3} \mathrm{~F}$, according to the following reaction. Balance the following chemical equation. $\ldots \mathrm{Ca}_{5}\left(\mathrm{PO}_{4}\right)_{3} \mathrm{~F}+\ldots \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \ldots \mathrm{CaSO}_{4}+\ldots \ldots \mathrm{HF}+\ldots \mathrm{H}_{3} \mathrm{PO}_{4}$ Knowing that Coca-Cola contains $170 \mathrm{mg} / \mathrm{L}$ of phosphoric acid and that 1.8 billion bottles $(33 \mathrm{cl})$ of this drink are produced each day, what is the mass (in tonnes) of fluoroapatite extracted and used to produce Coca-Cola in a year? a) 175 b) $2,6 \cdot 10^{3}$ c) $6,4 \cdot 10^{4}$ d) 525 e) $1,91 \cdot 10^{5}$ Circle the correct answer

8 pts \quad QUESTION V - Isomers of hydrocarbons

The fuels used in internal combustion engines are complex mixtures of hydrocarbons with between 4 and 12 carbon atoms and many additives.

The table below contains molecules that can be found in an example of petrol
Cles)

4 pts 1) For each pair, indicate whether they are isomeric molecules

Place a cross in the table indicating the correct response.
2) Give the number of the molecule associated with the following names.

8x
0.5 pt

	(Z)-3-methylpent-2-ene		2,3,4-trimethylpentane
	2,2,4-trimethylpentane		cycloheptane
	1,2-dimethylcyclohexane		2-methylpent-2-ene
	n-octane		4-methylcyclohex-1-ene

Complete the table using the diagrams a1- d2 above.

$\mathbf{5} \mathbf{p t s} \quad$ QUESTION VI - Solubility of the chlorides of potassium

What mass of potassium chloride should be added to 100.0 g of an aqueous solution containing 5% (by mass) of this salt in order to obtain a saturated solution (at $20^{\circ} \mathrm{C}$)?
The solubility of potassium chloride in water, at $20^{\circ} \mathrm{C}$, is $32,0 \mathrm{~g}$ per $100,0 \mathrm{~g}$ of $\mathrm{H}_{2} \mathrm{O}$.
a) $0,95 \mathrm{~g}$
b) $5,10 \mathrm{~g}$
c) $25,40 \mathrm{~g}$
d) $27,0 \mathrm{~g}$
e) $30,40 \mathrm{~g}$

Circle the correct response.

QUESTION VIII - Kinetics
On studying the kinetics of a reaction, the following graph is obtained.

4 pts 1) What is the chemical equation associated with the graph above ?
a) $\mathrm{O}_{2}+2 \mathrm{NO}_{2} \rightarrow \mathrm{~N}_{2} \mathrm{O}_{5}$
b) $\mathrm{N}_{2} \mathrm{O}_{5} \rightarrow \mathrm{NO}_{2}+\mathrm{O}_{2}$
c) $4 \mathrm{NO}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{~N}_{2} \mathrm{O}_{5}$
d) $2 \mathrm{~N}_{2} \mathrm{O}_{5} \rightarrow 4 \mathrm{NO}_{2}+\mathrm{O}_{2}$
2) What is the time for the half-life of this reaction?
a) 100 minutes
b) 23 minutes
c) 36 minutes
d) 50 minutes

Circle the correct response.
$\mathbf{2}$ pts 3) Based on the information that was provided, we can say that:
a) The reaction uses a catalyst
b) The reaction is exothermic

True	False	Impossible to determine

Place a cross corresponding with the correct choice.

5 pts	QUESTION X - Manganese					
5x1 pt	Manganese is an element which is found in various inorganic compounds and which has various oxidation states. In the series of minerals shown in the table below, calculate the oxidation number of manganese for each of the minerals and note it by means of a cross in the appropriate column.					
		Mineral name	Chemical formula	(+II)	(+III)	(+IV)
	a)	Hetaerolite	$\mathrm{ZnMn}_{2} \mathrm{O}_{4}$			
	b)	Pyrolusite	MnO_{2}			
	c)	Sarkinite	$\mathrm{Mn}_{2}\left(\mathrm{AsO}_{4}\right)(\mathrm{OH})$			
	d)	Tephroite	$\mathrm{Mn}_{2} \mathrm{SiO}_{4}$			
	e)	Rhodochrosite	MnCO_{3}			
	Place a cross in the box corresponding to the correct oxidation state.					

Additive manufacturing, better known as 3D printing, is an emerging technique for making parts with complex geometries. Stereolithography (SLA) is a printing technique based on light curing. Among the most commonly used polymers are polyacrylates.

1) Choose from the following structures the one that resembles the monomer for the structure above:
a.

b.

c.

d.

e.

2) During photopolymerization, what functional group reacts to form the polymer?

1 pt
a) Carboxylic Acid
b) Alcohol
c) Ester
d) Alkene
e) Amide
3) What is the functional group present in polyacrylates?

1 pt
a) Carboxylic acid
b) Alcohol
c) Ester
d) Alkene
e) Amide

$\mathbf{5} \mathbf{p t s}$	QUESTION XII - Rocket Fuel
$\mathbf{5} \mathbf{p t s}$	The fuel / oxidizing agent mixture consisting of N, N-dimethylhydrazine, $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NNH}_{2}$, and dinitrogen tetroxide, $\mathrm{N}_{2} \mathrm{O}_{4}$ (both in liquid form) is commonly used in the propulsion of space vehicles. The gases released during this reaction are as follows: $\mathrm{N}_{2}, \mathrm{CO}_{2}$ et $\mathrm{H}_{2} \mathrm{O}$. How many moles of gas are produced from 1 mole of $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NNH}_{2}$ considering a stoichiometrically balanced reaction with nitrogen tetroxide? a) 8 b) 9 c) 10 d) 11 Circle the correct response.

7 pts	QUESTION XV - Equilibrium			
$\begin{gathered} 2 \mathrm{x} \\ 0.5 \mathrm{pt} \end{gathered}$	The two equilibria shown below are characterised by the K_{p} values. $\begin{array}{lll} \text { (1) : } \mathrm{C}_{(\mathrm{s})}+1 / 2 \mathrm{O}_{2(\mathrm{~g})} \rightleftharpoons & \mathrm{CO}_{(\mathrm{g})} & \mathrm{K}_{\mathrm{p} 1}=10^{24} \\ \text { (2): } \mathrm{C}_{(\mathrm{s})}+ & \mathrm{O}_{2(\mathrm{~g})} \rightleftharpoons & \mathrm{CO}_{2(\mathrm{~g})} \end{array} \mathrm{K}_{\mathrm{p} 2}=10^{69}$ 1) Give the K_{p} expression for each equilibrium: $\mathrm{K}_{\mathrm{p} 1}=$ $\mathrm{K}_{\mathrm{p} 2}=$			
	2) Calculate $\mathrm{K}_{\mathrm{p} 3}$ for the third, new, equilibrium: (3) : $\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{C}(\mathrm{s}) \rightleftharpoons 2 \mathrm{CO}(\mathrm{g})$ a) 10^{45} b) 10^{-45} c) 10^{21} d) 10^{-21} Circle the correct response. 3) Using the following symbols (\rightarrow, \leftarrow or X if there is no change) identify what will happen to the position of the equilibrium in each of the following scenarios.			
2 pts				
4x1 pt	a) Increase the mass of $\mathrm{C}_{(\mathrm{s})}$: b) Increase the total pressure : c) Decrease the pressure of CO : d) Increase the temperature : Place a cross in the box that corresponds with the corre	\rightarrow	\leftarrow	X

5 pts	QUESTION XVI - Ideal Gases		
5x1 pt	A sample of gas is characterized by the quantities p (pressure), V (volume), T (absolute temperature), n (quantity of gas in mol). Look at the following graphic representations		
		-	
	a) Graph		
	b) Graph 1 can represent T as a function of V (p and n are constant).		
	c) Graph 3 can represent V as a function of p (T and n are constant).		
	d) Graph 2 can represent p as a function of n (T and V are constant).		
	e) Graph 1 can represent V as a function of p (T and n are constant).		
	Place a cross in the box corresponding to the correct choice.		

5 pts QUESTION XVII - Kinetics of the oxidation of iodide ions

The oxidation reaction of iodide ions by peroxydisulfate ions (persulfates) in aqueous solution:

$$
2 \mathrm{I}^{-}(\mathrm{aq})+\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}(\mathrm{aq}) \rightarrow \mathrm{I}_{2}(\mathrm{aq})+2 \mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})
$$

3 experiments are carried out, A, B and C , during which the change of the iodine concentration $\left(\mathrm{I}_{2}\right)$ is determined experimentally as the reaction progresses. For each experiment, the initial concentration of iodide ions $\left(\left[\left[^{-}\right]_{0}\right)\right.$ is modified. The following table specifies the conditions for each experiment:

Experiment	$\left[\mathrm{I}^{-}\right]_{0}\left(\mathrm{~mol} \cdot \mathrm{~L}^{-1}\right)$	$\left[\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}\right]_{0}\left(\mathrm{~mol} \cdot \mathrm{~L}^{-1}\right)$	Temperature (K)
A	$2,0010^{-2}$	1,00	293
B	$4,0010^{-2}$	1,00	293
C	$6,0010^{-2}$	1,00	293

The results of the experiments have been graphed below.

5x1 pt

Based ONLY on the experimental data provided:
a) The slowest reaction is :
b) The fastest reaction is :
c) The speed of the reaction is influenced by the $[I]_{0}$
d) The speed of the reaction is influenced by temperature.
e) The speed of the reaction is influenced by $\left[\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}\right]_{0}$

A	B	C
A	B	C
Yes	No	Impossible to determine
Yes	No	Impossible to determine
Yes	No	Impossible to determine

Circle the correct response.

